Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics.
نویسندگان
چکیده
The energy production of mitochondria in heart increases during exercise. Several works have suggested that calcium acts at multiple control points to activate net ATP production in what is termed "parallel activation". To study this, a computational model of mitochondrial energy metabolism in the heart has been developed that integrates the Dudycha-Jafri model for the tricarboxylic acid cycle with the Magnus-Keizer model for mitochondrial energy metabolism and calcium dynamics. The model improves upon the previous formulation by including an updated formulation for calcium dynamics, and new descriptions of sodium, hydrogen, phosphate, and ATP balance. To this end, it incorporates new formulations for the calcium uniporter, sodium-calcium exchange, sodium-hydrogen exchange, the F(1)F(0)-ATPase, and potassium-hydrogen exchange. The model simulates a wide range of experimental data, including steady-state and simulated pacing protocols. The model suggests that calcium is a potent activator of net ATP production and that as pacing increases energy production due to calcium goes up almost linearly. Furthermore, it suggests that during an extramitochondrial calcium transient, calcium entry and extrusion cause a transient depolarization that serve to increase NADH production by the tricarboxylic acid cycle and NADH consumption by the respiration driven proton pumps. The model suggests that activation of the F(1)F(0)-ATPase by calcium is essential to increase ATP production. In mitochondria very close to the release sites, the depolarization is more severe causing a temporary loss of ATP production. However, due to the short duration of the depolarization the net ATP production is also increased.
منابع مشابه
Effect of Ca on cardiac mitochondrial energy production is modulated by Na and H dynamics
Nguyen M-HT, Dudycha SJ, Jafri MS. Effect of Ca on cardiac mitochondrial energy production is modulated by Na and H dynamics. Am J Physiol Cell Physiol 292: C2004–C2020, 2007. First published March 7, 2007; doi:10.1152/ajpcell.00271.2006.—The energy production of mitochondria in heart increases during exercise. Several works have suggested that calcium acts at multiple control points to activat...
متن کاملA computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte.
An intricate network of reactions is involved in matching energy supply with demand in the heart. This complexity arises because energy production both modulates and is modulated by the electrophysiological and contractile activity of the cardiac myocyte. Here, we present an integrated mathematical model of the cardiac cell that links excitation-contraction coupling with mitochondrial energy ge...
متن کاملEffect of inotropic stimulation on mitochondrial calcium in cardiac muscle.
Ca(2+)-dependent activation of citric acid cycle enzymes has been demonstrated in isolated cardiac mitochondria. These observations led to the hypothesis that Ca2+ is the signal coupling myofibrillar energy use to mitochondrial energy production in vivo. To test this hypothesis we have measured mitochondrial Ca2+ content during increased energy demand, using electron probe microanalysis. Mitoch...
متن کاملInhibiting Na+/K+ ATPase Can Impair Mitochondrial Energetics and Induce Abnormal Ca2+ Cycling and Automaticity in Guinea Pig Cardiomyocytes
Cardiac glycosides have been used for the treatment of heart failure because of their capabilities of inhibiting Na+/K+ ATPase (NKA), which raises [Na+]i and attenuates Ca2+ extrusion via the Na+/Ca2+ exchanger (NCX), causing [Ca2+]i elevation. The resulting [Ca2+]i accumulation further enhances Ca2+-induced Ca2+ release, generating the positive inotropic effect. However, cardiac glycosides hav...
متن کاملProtective Effect of Aerobic Training along with Resveratrol on Mitochondrial Dynamics of Cardiac Myocytes in Animal Model of Non-alcoholic Fatty Liver Disease
Background & objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction. The aim of the present study was to examine the effect of aerobic training along with resveratrol on cardiac expression of OPA1 and DRP1 in NAFLD male rats. Methods: In this experimental study, forty eight male Wistar rats were classified into two groups: NAFLD (n=40) and Control-N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 6 شماره
صفحات -
تاریخ انتشار 2007